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The quadrupole moment obtained is larger than the 
single particle estimate \Q\ ^0.05 b. The E2 transition 
probability for the second excited state (f+) to the 
ground state (|+) transition is known to be strongly 
enhanced compared with the single particle estimate. 
The nucleus F19 has been treated on the rotational 
model by Paul13 and Rakavy.14 On the strong coupling 
theory of the rotational model, the E2 lifetime and the 
quadrupole moment are interrelated by an intrinsic 
quadrupole moment Qo, and the quadrupole moment 
was calculated to be \Q\ ^0.091 b from the measured 
lifetime under an assumption that the levels belong to 
a i T = | band and the particle part of the transition 
probability can be neglected. Paul has shown, however, 
that a mixture of two rotational bands is necessary to 
interpret the level structure of F19 and also that the 
collective part and the particle part of the E2 transition 
probability are of comparable importance. 

» E . B. Paul, Phil. Mag. 2, 311 (1957). 
14 G, Rakavy, Nucl. Phys. 4, 375 (1957). 

I. INTRODUCTION 

THE mu-capture interaction, yr-\rp—*n+v, like 
beta decay and mu decay, is presumably de

scribed by the universal Fermi interaction (UFI)1'2 

* Based on a dissertation submitted in partial fulfillment of the 
requirements for the Ph.D. degree at the University of Michigan. 

f National Science Foundation Pre-Doctoral Fellow, 1959-63. 
Now at Department of Physics, Johns Hopkins University, 
Baltimore, Maryland. 

i E. Fermi, Z. Physik 88, 161 (1934). 
2 J. Tiomno and J. A. Wheeler, Rev. Mod. Phys. 21, 153 (1949). 

On the other hand, Inoue, Sebe, Hagiwara, and 
Arima15 have treated, recently, the s-d shell nuclei on 
the intermediate coupling shell model, and predicted 
the quadrupole moment of the state to be Q^ —0.097 b 
by taking the effective charge /3~0.5. 
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given in the refined V—A form of Feynman and Gell-
Mann.3 It is not very well understood experimentally, 
however, and we can only say at this time that it fits 
the UFI hypothesis to within 20% or so.4 In this paper 
we present a theoretical study of this capture process in 
certain of the light 2s— Id nuclei to see whether existing 

3 R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193 
(1958). 

4 R. Klein and L. Wolfenstein, Phys. Rev, Letters 9, 408 
(1962) j see footnote 12, 
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Theoretical calculations of mu capture rates in 2s-ld nuclei are compared with experiment in the hope of 
elucidating the coupling constants of the interaction. Working from Primakoffs closure-approximation 
expression for the total average capture rate, the nuclear matrix element is treated in the context of the 
Nilsson unified model. A Hill-Wheeler integration must be performed to avoid extraneous coordinates in 
the A -particle wave function. The one- and two-particle parts of the matrix element are broken up into the 
various shell contributions, since all of the angular momentum properties reside in the shell wave function 
for the nucleons outside the O16 core. The closed-shell matrix elements are easily treated with standard 
angular-momentum techniques. The method for reducing the outer-shell matrix elements to a form amenable 
to evaluation by a computer is given in an appendix. Radial integrals are obtained from the Ford-Wills 
muon wave functions. The average neutrino momentum v is chosen on the basis of Kaplan's Fermi-gas 
model for the capture process and the subsequent comparison with neutron evaporation rates. The choice of 
nuclear parameters for F19, Ne20, Si28, CI35, and CI37 is discussed and numerical results are given. Comparing 
with experimental rates, one cannot exclude the possibility that the Fermi part of the interaction is absent. 
If a V—A theory is assumed, however, we conclude the induced pseudoscalar coupling is probably present. 
The induced pseudoscalar with the "wrong" sign, gP= —8gA, is definitely excluded, and the "large" pseudo-
scalar, gp = 16gA, seems to fit the data better at j> = 0.75. 
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experimental information on total average rates can 
elucidate the nature of the coupling constants of the 
interaction. 

Ideally, one would like to study mu capture on free 
protons, e.g., in liquid hydrogen. There are a number of 
difficulties in such experiments, and it has only been 
recently that the capture has even been observed.5 

The results can only be said to be in agreement with the 
UFI predictions and may, perhaps, be somewhat low.6 

For intensity reasons, most experiments on mu 
capture have been concerned with capture by protons 
within a nucleus, since the rate roughly goes as Z4. 
Nuclear capture unfortunately introduces all the 
uncertainties of nuclear physics into the theoretical in
terpretation of the experiments. 

There are four coupling constants to be determined, 
gv, gA, gpy and gwM, as can be seen from the most 
general Lorentz invariant matrix element for the inter
action that can be written.7 gv and gA are the usual 
V and A coupling constants (form factors) and UFI 
assumes them to be the same as those that occur in 
beta decay and mu decay (but evaluated at the appro
priate momentum transfer), gp is the induced pseudo-
scalar coupling constant7,8 and is estimated to be 
?^&gA from a dispersion theoretic argument. gwM is the 
"weak magnetism" coupling constant predicted by the 
conserved vector current theory (CVC),3 arising from 
a pion-lepton weak vertex. In principle, these four form 
factors could be determined by four different capture 
experiments. 

There are, in fact, four kinds of experiments which are 
available: capture rates to particular final states, total 
capture rates, hyperfine difference effects, and neutron 
asymmetry. The hf experiments in F19 by Winston and 
Telegdi9 establish that the interaction is of the V—A 
type rather than V+A.10 The neutron asymmetry 
experiments indicate the presence of the induced 
pseudoscalar term which might be somewhat larger 
than the theoretical estimate.11 The ground-state to 
ground-state partial transition C12 —> B12, a 0+ —> 1+ 

transition, is well studied12 and shows that the Gamow-

6 R. H. Hildebrand, Phys. Rev. Letters 8, 34 (1962); E. Bleser, 
L. Lederman, J. Rosen, J. Rothberg, and E. Zavattini, ibid. 8, 
288 (1962); E. Bertolini, A. Citron, G. Gialanelli, S. Focardi, 
A. Mukhin, C. Rubbia, and S. Saporetti, in Proceedings of the 
International Conference on High Energy Nuclear Physics, Geneva, 
1962 (CERN Scientific Information Service, Geneva, Switzerland, 
1962), p. 421. 

6 A. Fujii, Nuovo Cimento 27, 1025 (1963). 
7 M. L. Goldberger and S. B. Treiman, Nuovo Cimento 12, 

327 (1959). 
8 L . Wolfenstein, Nuovo Cimento 8, 882 (1958). 
9 G. Culligan, J. F. Lathrop, V. L. Telegdi, R. Winston, and 

R. A. Lundy, Phys. Rev. Letters 7, 458 (1961); R. Winston, Phys. 
Rev. 129, 2766 (1963). 

10 R. Silbar and H. Uberall, Nuovo Cimento 22, 864 (1961), 
11 V. Eseev, V. I. Komarov, V. Z. Kush, V. Roganov, V. Cherno-

gorova, and M. Szymczak, Zh. Eksperim. i Teor. Fiz. 41, 306 
(1961) [English transl.: Soviet Phys.—JETP 14, 217 (1962)]. 

12 See, e.g., G. T. Reynolds, D. B. Scarl, R. A. Swanson, J. R. 
Waters, and R. A. Zdanis, Phys. Rev. 129, 1790 (1963), and 
references cited therein. 

Teller part of the interaction is as expected from UFI, 
as well as showing that if the induced pseudoscalar 
term is present, it has the expected sign. The g.s. to g.s. 
transition He3—>H3, a J+—>|+ transition which can 
give information regarding the Fermi part of the 
interaction, is in agreement with UFI.13 A recent 
measurement of a 0+ —» 0~~ transition in capture on O16 

indicates the induced pseudoscalar term is larger than 
expected,14 gPc^l5gA, something which is consistent 
with the results on free protons5,6 and on neutron 
asymmetry.11 The results of experiments measuring 
total capture rates15 will be discussed here at some 
length. 

Since the initial ayalysis of Wheeler and Tiomno, 
using a Fermi-gas model of the nucleus,2 theoretical 
interpretation has proceeded along two somewhat 
different paths. One school of thought feels that total 
rates should be calculated by summing up the squared 
matrix elements for the partial transitions to final 
states.16 Most of the effort here has been in using shell-
model wave functions to describe the initial and final 
nuclear states, some of the wave functions being quite 
simple-minded, some quite complex. The results leave 
something to be desired. If we were to accept the values 
of the matrix elements for Ca40 given by Luyten, Rood, 
and Tolhoek as good, then the squared coupling 
constant needed to fit the experimental rate would be 
about 50% less than the UFI value.16 These authors 
indicate that this discrepancy is probably due more to a 
lack of detail in their nuclear wave functions than to a 
failure of UFI. 

The other theoretical procedure, and the one to be 
used here, has been to avoid use of final-state wave 
functions by means of the closure approximation. 
Because of the large amount of energy available (muon 
mass =105 MeV), very many of the possible final 
states contribute to the rate. By extending the sum 
over energetically allowed final states to a sum over 
all final states, the completeness relation reduces the 
expression for the rate to one which involves only the 
ground-state wave function of the initial nucleus. This 
last is presumably much better known than the wave 
functions for the excited final states, and w e only have 
introduced error from the extension of the sum. How
ever, this method requires a knowledge of the average 
phase-space factor which was taken out of the sum over 
final states. 

The closure approximation was first applied by 

13 See, e.g., L. B. Auerbach, R. J. Esterling, R. E. Hill, D. A. 
Jenkins, J. T. Lach, and N. H. Lipman, Phys. Rev. Letters 11, 
23 (1963). 

14 R. C. Cohen, S. Devons, and A. D. Kanaris, Phys. Rev. 
Letters 11, 134 (1963). 

15 See, for example, J. C. Sens, Phys. Rev. 113, 679 (1959). 
i6 J. M. Kennedy, Phys. Rev. 87, 953 (1951), Ca40; H. A. 

Tolhoek and J. R. Luyton, Nucl. Phys. 3, 679 (1957), 2s-ld 
nuclei; J. R. Luyten, H. P. C. Rood, and H. A. Tolhoek, ibid. 
41, 236 (1963), O16, Ca40; I. Duck, ibid. 35, 27 (1962), He3, O16, F19; 
H. G. Wahsweiler, Z. Physik 170, 574 (1962), CI35"37. 



B544 R I C H A R D R . S I L B A R 

Primakoff in his model-independent calculation of the 
total capture rate for an "average" nucleus, specified 
only by Z and A .17 He obtains a formula for the rate 

r A~zi 
X(Z,^) = constXZeff

4 1-constX , (1) 
L ZA J 

which gives the well-known "Primakoff plot." As given, 
the above formula fits the V—A theory quite well, 
expecially when the fast Auger conversion to the lower 
hf state is taken into account.15,18 

Unfortunately, Klein and Wolfenstein have pointed 
out that one of Primakoff's approximations is unjustified 
and that, when this is taken into account, his formula is 
changed to19 

r A~zi 
X(Z,A) = constXZeff

4(l-Aa) 1-constX . (2) 
L ZA A 

On fitting the experimental rates to this, one finds 
rather poor agreement with the UFI predictions.19 

In fact, the fitted-squared coupling constant must be 
twice that given by UFI. It seems that a structureless 
nucleus, such as Primakoff considered, does not contain 
sufficient detail to account for the observed rates. 

The shell model calculations of Luyten, Rood, and 
Tolhoek give a G2 which is too small while the structure
less nuclear model of Primakoff, as modified by Klein 
and Wolfenstein, gives a G2 which is too large. This 
might be an indication of a difference between the two 
methods used, summation of partial transitions and 
closure approximation, but the hope is that the use of a 
more detailed nuclear wave function will bring them 
both in line with UFI, and in doing so give detailed 
information as to its finer details. 

In this paper we evaluate the nuclear matrix elements 
in the context of the unified Nilsson nuclear model and 
find a G2 consistent with UFI. Moreover, if a V—A 
theory is accepted, the comparison of these results with 
experiment indicates the presence of the induced 
pseudoscalar term of the expected sign. 

II. EXPRESSION FOR TOTAL AVERAGE 
CAPTURE RATE 

Let us begin with the closure approximation expres
sion for the total average capture rate as given by 
Primakoff17-20 

. J + l / 
X = X+H X_ 

21+1 21+1 

= (VMK'IA+A'IVMK1) (3) 
2<ir2al?\ + v/M 

17 H. Primakoff, Rev. Mod. Phys. 31, 802 (1959). 
18 V. L. Telegdi, Phys. Rev. Letters 8, 327 (1962). 
19 Reference cited in footnote 4. See, however, footnote 70a of 

R. Winston, Ref. 9. 
20 H. Uberall, Phys. Rev. 121, 1219 (1961). 

as found from an effective nonrelativistic Hamiltonian 
for the process derived from the general Lorentz 
invariant matrix element.21 Here, / is the nuclear spin, 
X± being the capture rates from the upper and lower hf 
states respectively. M is the mass of the nucleus and 
the muon Bohr radius 

h2 137/ «A 
a,= = _ ( i + _ ) (4) 

e2mj Mfj, \ M/ 

in units with h=c=me= 1. v is the average momentum 
of the emitted neutrino. 

The nuclear matrix element in (3) is taken with 
the ground-state wave function of the initial nucleus. 
We have split the operator 3C+3C into one- and two-
particle parts 

^ /l + rz(i)\ 
A=a^(—Y~ r{u)> (5a) 

w-1 (5b) 

where the sums on i and j run over all the nucleons of 
the nucleus. The muon space wave function <p(r) is 
normalized so that it goes to 1 as Z—>0. jo is the 
zero-order spherical Bessel function. All dependence on 
the coupling constants resides in the a'$. 

a' = Gv
2, 

a" = GA*-lGAGp+\GP\ (6) 

a=af+3a" = Gv
2+3GA2-2GAGp+Gp2, 

where the effective G's are related to the g's under the 
usual UFI-CVC assumptions by21 

Gv=gv(l+p/2MP), 

GA = gA—gvO-+vP—Vn)v/2Mp, (7) 

Gp=[_gp-gA-gv(l+»v-V<n)~]v/2Mp. 

Here the g's are the form factors appearing in the 
relativistic matrix element. nv and ixn are the anomalous 
magnetic moments of the proton and neutron, respec
tively, and give, in the combination Up—fin, the effect 
of the "weak magnetism" term. 

The two-particle operator A' gives the effect of the 
Pauli exclusion principle as it acts upon the produced 
neutron and is therefore responsible for the isotope 
effect, an inhibition of the capture rate due to the 
reduction in the number of final states available to 
this neutron. 

III. NUCLEAR MODEL 

The success of the yy-coupling shell model for a 
description of nuclear properties is by now well estab-

21 A. Fujii and H. Primakoff, Nuovo Cimento 12, 327 (1959). 
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lished.22 Nevertheless, the description is not a complete 
one for the 2s—Id nuclei, as evidenced by the poor 
predictions of quadrupole moments, and collective 
aspects must be incorporated into the nuclear wave 
functions. The unified approach of Bohr and Mottleson23 

together with the Nilsson model24 has had considerable 
success for the 2s—Id nuclei.25 

The chief collective feature of nuclei is their equi
librium deformation, which, following Nilsson, we 
assume to be axially symmetric. Corresponding to a 
splitting of the nuclear Hamiltonian into an intrinsic 
and a rotational part, we write the nuclear wave function 

^^X^x^DMK'ia^y). (8) 

9CQ is the eigenfunction of the intrinsic part of the 
Hamiltonian, expressed in intrinsic nuclear coordinates, 
and DMK1 is the eigenfunction of the rotational part, 
expressed in terms of Euler angles.26 The quantum 
numbers / , M, and K refer to the nuclear spin and its 
projections along some space-fixed axis and along the 
nuclear body-fixed axis. £2 is a quantum number referring 
to the projection of the intrinsic angular momentum 
along the body axis. 

The intrinsic wave function has as its arguments the 
coordinates of the A nucleons with respect to the slowly 
rotating nuclear axes. There are 3A such space coor
dinates. The three Euler angles, the arguments of the 
rotational part of the wave function, are also space 
coordinates. This means we have, in all, 3A+3 space 
coordinates for the A nucleons. There is a problem of 
three extraneous coordinates in our wave function as 
written in (3). 

The method for dealing with these superfluous 
coordinates is to perform a Hill-Wheeler integration 
over the three Euler angles.27 

W = fd6X^(xf)DMKI(6), (9) 

where we use 6 to abbreviate a, /?, 7. Here we take 9Co, 
which does not have good angular momentum properties 
because of the lack of spherical symmetry, and project 

22 See, e.g., M G. Mayer and J. D. H. Jensen, Elementary 
Theory of Nuclear Shell Structure (John Wiley & Sons, Inc., 
New York, 1955). 

23 A. Bohr and B. Mottelson, Kgl. Danske Videnskab. Selskab, 
Mat. Fys. Medd. 27, No. 16 (1953); J. P. Elliott, University of 
Rochester Report NYO-2271, 1958 (unpublished). 

24 S. G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat. Fys. 
Medd. 29, 16 (1955). 

25 G. Rakavy, Nucl. Phys. 4, 375 (1957); H. E. Gove in Proceed
ings of the International Conference on Nuclear Structure (The 
University of Toronto Press, Toronto, 1960); many references are 
given in R. K. Sheline and R. A. Harlan, Nucl. Phys. 29, 177 
(1962), footnote 5. 

26 We use throughout this paper the conventions of A. R. 
Edmonds, Angular Momentum in Quantum Mechanics (Princeton 
University Press, Princeton, 1960), 2nd ed. 

27 J. J. Griffen and J. A. Wheeler, Phys. Rev. 108, 311 (1957); 
R. E. Peierls and J. Yoccoz, Proc. Phys. Soc. (London) 70, 381 
(1957). 

from it a good angular momentum eigenfunction ^MK1 

by means of the weighting function DMK1* Kurath and 
Pieman have shown that, in the \p shell at least, such 
a generating procedure gives wave functions with 
very good overlap with intermediate coupling wave 
functions.28 

I t should be noted in (9) that the arguments of XQ 
are in body-fixed coordinates, i.e., they depend on the 
Euler angles 0. We can re-express this in terms of space-
fixed coordinates by means of a rotation operator, 

9Cb(a/)=D(a)9Cb(*), (10) 
where26 

D (6) = e-
laJ*e-lPJve-zyJz 

— e—ia]Z(l)e—iP]'y(l)e—iyjzQ.). . .g-xyjzW 

=81(0)62(6). .-dA(e), ( i i ) 

which we have factored into single-particle rotation 
operators d(6). The rotation operators, when acting 
on a good angular-momentum eigenfunction, give a 
linear combination of angular-momentum eigenfunc-
tions with the same j , 

a ( ^ ' = E ^ / ( ^ . (12) 

The Dm*J here are exactly the same as in (8), occurring 
now as the matrix elements of the rotation operator. 

Our interest lies not so much in nuclear wave func
tions as in nuclear matrix elements. Using (9) and (10), 
we can express these in terms of doubly integrated 
theta-dependent matrix elements, 

ME^i^MK^e^MK1) 

= [<Uf [d6nDuK1\6!)DMKI(6'f)ME(6!fi"), (13) 

where 

A f £ ( ^ , 0 = <9Cb(^)| el 9Cb(*")> 
= <9Cb(*)| D t (^ )0D(O |9Co(* )> . (14) 

The intrinsic wave function in this final form is 
expressed in terms of space-fixed coordinates. 

The intrinsic wave function 9CQ can be written as a 
Slater determinant of single-particle Nilsson eigenfunc-
tions.24 These can be written in the form 

x« (r)=E/** (r)x«y. (15) 
The eigenfunctions, in addition to the component of 
angular momentum along the body axis co and to a label 
r specifying which Nilsson level of that co is meant, 
have N, the number of harmonic-oscillator quanta, as 
a good quantum number. For the 2s—Id shell, N=2 
and the sum in (15) runs over j=J, f, f. The CjJr) are 
tabulated in Nilsson's paper for various choices of the 

28 D. Kurath and L. Pieman, Nucl. Phys. 10, 313 (1959). 
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nuclear deformation 77. The energy eigenvalues asso
ciated with the eigenfunctions (15) are twofold 
degenerate in dbco and depend on v\ also. (See the 
energy-level diagrams given in Sec. VIII.) Knowing 
the deformation from other evidence, the Nilsson 
configuration is chosen so as to minimize the total energy. 

IV. REDUCTION TO SHELL MATRIX ELEMENTS 

Since N is a good quantum number of the Nilsson 
functions, we can take advantage of their shell-like 
nature to reduce the nuclear matrix elements to the 
contributions from the various A -̂shells. Following a 
similar reduction of Uberall,20 we write the totally 
antisymmetric intrinsic wave function 

9Cb(l- • -il) = E p ep^=o"(Pl,P2) 
X$N-or(P3,P4:)$Nm.1''(PS- • -P10) 
X$ar-iTCPH- • -P16)$n(P17- • -PA). (16) 

Here $N=oti
v,T are the closed neutron and proton shell 

functions which together make up the O16 core, and 
$12 is the function for the unfilled 2s— Id shell. Each of 
these shell functions is assumed normalized and anti
symmetric in its own arguments. 

The reason for doing this is that the antisymmetric 
closed-shell functions, which at first would be written 
as a Slater determinant of Nilsson single-particle 
eigenfunctions, can just as well be written as a Slater 
determinant using any other convenient set of basis 
functions. This is because the unitary transformation 
between the two sets of basis functions becomes, in the 
Slater determinant, the determinant of the transforma
tion matrix, which is just a constant phase. Thus we 
will only have to use the Nilsson eigenfunctions in the 
outer shell function, $fi. The appropriate basis for the 
inner shell functions will become clear when we have to 
evaluate the contributions to the matrix element from 
these shells. 

Another big advantage of (16) is the fact that the 
antisymmetry of the inner shell functions requires that 
each of these have a total angular momentum J=0. 
All of the angular momentum of the intrinsic wave 
function resides in the outer shell function <£a. The 
rotation operator D(0) does not act on the spherically 
symmetric closed shells. 

Substituting (16) into the nuclear matrix element for 
capture occurring in (3) and using the orthogonality 
between the various shell functions, we can eventually 
recast the one-particle part in the form 

CD (A) = MN^+MN^+L 

MN«=a{$N*\ £ ^(r0|*^*>, 

(17a) 

(17b) 

X J B ^ W ' ) / * , (17c) 

/ I » /1 + T3
(i)\ I \ 

£i^=/#o Dt(0')iz l w(u)D(nM, 

(17d) 

where K is the normalization constant for the unfilled 
shell. 

K= fde' / V z W * ( 0 ' ) Z W ( 0 " ) 3 C ( 0 ' / ' ) . (18a) 

X=($a\W(6')D(6")\$a). (18b) 

The reduction for the two-particle part is somewhat 
more complicated. 

(A')=- £ M W r < - £ W 2 ) + £ ( 3 \ (19a) 
N,N',T,T' NT 

MNT,N>r>' = pq($NT(12- • .p)*NS{l'2'- • Y)l 

X«( l , l , ) l^ r ( l , 2-- -#)^ T ' (12 , - - -g , )> , 
(1%) 

£<M>= fde' [de"DMKI*(e')DMKI(d") 

X£ ( 2 ' 3 ) (0 ' ,O /# , (19c) 

X[T + ^TJ 1 HrJ 1 ) T + ( 1 ' )> ( l J l , ) 

xD(OIMi'-M-)>, (i9d) 

XD(OI$a>. (19e) 

All these terms involve the exchange of a neutron and a 
proton and the antisymmetry of the over-all wave 
function leads us to expect each term to give a negative 
contribution. The negative sign is explicit in the inner-
inner and inner-outer exchange terms and is to be 
expected from the antisymmetry of the shell function for 
the outer-outer term as well. These terms give the 
reduction in the rate due to the Pauli exclusion effect. 

In (17) and (19) only the N = 0 and N= 1 inner shells 
are included in the closed shell contributions, i.e., only 
the O16 core. For the treatment of CI35 and CI37, how
ever, we can better work with holes in a closed Ca40 

core. The one-particle part, in such a picture, takes the 
form 

while the two-particle part becomes 

(20a) 

{A')=- E Mwr>'+ E W2 )+£ ( 3 ) . (20b) 
2V,2V'=0,r,r' N=0,r 
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Here the shell function $$2 is composed of the Nilsson 
eigenfunctions for the appropriate hole configuration. 

V. CLOSED-SHELL MATRIX ELEMENTS: Si28 

The closed-shell matrix elements in the above 
expressions can, as said before, be evaluated with any 
appropriate set of basis functions. The natural choice is 
the nlmtms basis. The one-particle matrix elements are 
easily found to be 

MNT=#22] Y,(nlmims \ <p2 (r) \ nlmims) 
l mi m8 

= a Z 2 (2/+ \){nl \ ^ (r) | nl), (21) 
1 

a simple expression in terms of the radial integrals of 
the squared muon wave function. The two-particle part 
is, by the standard techniques of angular momentum,26 

M Nv,N'v 

— H H {ms,ms'\a'+a"ai'(T2\'ms',ins) 
lmima I'mi'mg' 

X(nlfni,n'fnii \ <p(/i) (p(r2)jo{vri2) \ n'lfmi,nlmi) 

= # Z Z 2(nlmhn'l'mi\ ^(ri)^(r2)io(^i2)i 
l,V mi,mi' 

Xn7m/,nlmi). (22) 

The collapse of the spin sums into the combination 
a= a'+3a" for closed shells has been noted previously 
by Tolhoek and his collaborators.16 To proceed further 
we use the identity29 

00 

jo(m2)= E MvrdMvTi) 

X E ( - l ) M x F / ( l ) F _ / ( 2 ) , (23) 

and find 

M Nn.N'v 

X{nl I jx(vr) <p(r) \ n'l')(n'V | n(vr)<p(r) \ nl) 

= aj: 2(2;+l)(2r+l)(R„<x2(«'00|X0)2, (24) 

where 
(Rii'x=<*/| h{vr)cp{r) | »7/>= <5LVVk. (25) 

Here we have used the Wigner-Eckart theorem, the 
symmetries and orthogonality of Clebsch-Gordan 

29 G. N. Watson, Theory of Bessel Functions (Cambridge Univer
sity Press, London, 1958), 2nd ed., p. 363. 

coefficients, and the well-known result30 

/ (2 /+ i ) (2 r+ i ) \ 1 / 2 

<Z | |F* | | rH( - l ) ^ j (Z/'OOIXO). (26) 

Note that the parity selection rule that Z+Z'+X must 
be even and the triangle condition A(ZZ'X) severely 
restrict the number of X's that contribute from the 
infinite sum in (23). 

Within the context of the Nilsson model, we can treat 
the Si28 nucleus at this time. Here the N=2 shell is 
exactly half-full, and as such, is expected to have its 
quadrupole moment vanish.31 This means the nucleus 
has no deformation, i.e., is spherically symmetric. That 
the deformation "crosses over" at this nucleus is 
confirmed experimentally; Al27 must have a positive 
deformation and Si29 a negative deformation in order to 
predict the correct spins from the Nilsson configura
tions. At zero deformation the Nilsson eigenfunctions 
reduce to ordinary shell-model eigenfunctions and the 
calculation of (A+A') goes fairly simply. 

The effect of the O16 core is given as before. The outer 
nucleons, those outside this core, are treated as con
stituting two filled lds/2 shells, for the protons and 
neutrons separately. The antisymmetric shell functions 
9CidB/2

,''7r are, as usual, orthogonal to each other and 
to the shell functions $N

V>T of the core. 
For the one-particle operator 

n 

< A u t = 0 < a W l Z <P2(ri) I Xid,,2*)=aX6(Rld, (27) 

where the factor of 6 corresponds to the six protons in 
the shell. 

For the two-particle operator 

(^4')out= ~M'idf>t2idf>i2—2 S MfN,idsi2, (28a) 
2V=0,1 

M\d„2,id„2=n2(Xld5l/(l- -^)9Cirf5//(l'- • -n')\u(\,V) 

X | Xld«2*(l'2' • - » ) a w ( 1 2 ' - • •»')>, 

(28b) 

Mf
NMh!2^nm{$N*(\-' •m)9Ci*//(l- • -O|co(l,l ') 

X | $ W 1 ' - • -f»)9CW(l-' •»')>- (28c) 

To evaluate these we must use the nljm basis for the 
outer shell. In the inner-outer exchange term we can 
still use the nlmtms basis for the inner shell and we 
find, using (23) again, 

M'Ntldbl2=a Ex 6(lZ+l)(R.u^x2(/200|X0)2 (29) 

80 A. R. Edmonds, Angular Momentum in Quantum Mechanics 
(Princeton University Press, Princeton, 1960), 2nd ed., p. 76. 

81 M. G. Mayer and J. D. H. Jensen, Elementary Theory of 
Nuclear Shell Structure (John Wiley & Sons, Inc., New York, 
1955), p. 106. 
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TABLE I. M\' and M\" for closed ldm shell, (Si28). 

Inner shell 

1^1/2 
1^1/2 
1^1/2 
1^3/2 
1^3/2 
1^5/2 
1^5/2 
1^5/2 

X 

2 
1 
3 
1 
3 
0 
2 
4 

Afx' 

6 
0 
6 

36/5 
24/5 

6 
48/7 
36/5 

Mx" 

18 
48/5 
42/5 
12 
24 
42/5 
46/7 

1116/35 

in much the same way as before. To collapse the spin 
sums and obtain the combination a, we have gone from 
the nljm basis to the nlmtms basis by means of Clebsch-
Gordan coefficients. 

The outer-outer exchange term M\dmtidhn not involv
ing a closed shell of both fs for a given /, will not give 
the same relationship between the Fermi and the 
Gamow-Teller terms, viz., the o! and a!' terms. Here 
we must use the nljm basis and write 

M'nw? = Ex (fl,Mx,+a,,Mx
,,)CR«'x2, (30) 

where26 

Mx'= ( - l>"-%r<i|| F i / ) ( / | | n\j), (31a) 

Mx"=(-1) ' " - 'Z*( -D x + 1 -* 
xMillr*||y></||r*|i). (3ib) 

Here Tq
k is a spherical tensor defined by 

Tq
k=Tl(UlJ.v\kq)Y^v. (31c) 

The reduced matrix elements are given by 

0 1 W H (-l)^-^l(2j+l)(2f+l)/^Ji^ 
XO'/J - i lXO), (32a) 

01 |2*l l i #>=(-D ,T6(2i+l)(2/+l)(2/+l) 

X(2/ ,+ l)(2^+l)/4^]1/2 

ri r xi 
x(woo\\o)h \ I 

Li / £J 
(32b) 

the last symbol being a 9/ symbol. Here we always 
couple in the order l+ - |= j , which accounts for the 
difference in phase in (33a) from the expression given 
by Elliott.32 With these, 

My!= ( 2 y + l ) ( 2 / + l ) ( i / J - i | X 0 ) » , (33a) 

Mx"=6 (2j+1) (2f+1) (21+1) (2/'+1) X (S'OO | X0)2 

r/ /' 
X l * ( 2 * + l ) i * U . (33b) 

r/ r xi2 

) i i i\ 
lj f k) 

32 J. P. Elliott, University of Rochester Report NYO-2271, 
1958, p. 51 (unpublished). 

The values of these quantities for the cases we need 
are given in Table I. We have included the inner shells 
as well and we see that, on summing over the inner j , 
we recover the result indicated in (37), viz., 

Mx" = 3Jkf/.33 

VI. OUTER SHELL MATRIX ELEMENTS 

The outer shell matrix elements, i.e., those involving 
the Nilsson eigenfunctions and the subsequent Hill-
Wheeler integration, are of course much more difficult 
to evaluate. The method for doing this is given in an 
appendix and we only present the final results here. 

For the normalization constant, we have 

# = £ €PA(P)Xisums, (34a) 

j s u m s = £ - " E S O'cofjP) X 3 sums, (34b) 

3 sums = £ • • • E ft 0 > P ) X 0" <JcoE), (34c) 
$1 $n-2 

where 

A(P) = 5TP1T18. rpiTi"rp 2T2 

<E=< 

urpnTn > 

°3' 
(rpi)r. (n)r. (rp2)r. M . 

r . (rpn)r. 
L3n<*Pn L3n^n 

(r«) 

(35a) 

(35b) 

X (3n-2Jnttn-2QUQn \ IK) . ( 35c ) 

In (34a) P is a permutation of the labels 1 • • • n, arising 
from the Slater determinant for the ^—particle outer 
shell function, where it acts on the n sets of quantum 
numbers of the Nilsson configuration. These quantum 
numbers are, as we saw, co, r, and r, the isospin compo
nent ( | for a proton, — \ for a neutron). e p = ± l 
depending on whether P is even or odd. A(P) severely 
restricts the nature of P so that the ith. and Pith 
particles are either both protons or both neutrons. 
In (35b) we have used the fact that the Nilsson coeffi
cients are real, and in (35c) Q is taken as P or E, the 
identity permutation, as required. 

The expression for the one-particle matrix element is 
very similar, involving only additional factors of radial 
integrals. 

£(1) = a £ £ ePA;(P)Xisums/Z, (36a) 

j sums = T,'-Y,& (MP) XfouXS sums, (36b) 
h in 

$ sums= E • • • E X(j3uP)X(jguE) (36c) 

33 It is also interesting to note that 
2 W = 3 2 l f x ' , j fixed. 
x x 



C A L C U L A T I O N S OF MU C A P T U R E R A T E S IN 2 s-Id N U C L E I B549 

where 
Ai(P) = 5Tplrf-l/25rpiri' • * 5TpnTn , (37a) 

&ii = (*M<P2(ri)\n&), (37b) 

and the other quantities are as in (35). 
The two-particle matrix elements are, as usual, more 

complicated. For the inner-outer exchange terms we 
again have a collapse of the spin summations to give 
the coupling constants in the combination a=a '+3a" . 

W 2 ) = fl£ E epA/(P)Xjsums/K, (38a) 
t=i P 

j sums^L- • • £ [X(2H-l)GW)|XO)2(5W2] 
h in x 

X©C/«rP)XH sums, (38b) 

g sums= E •' • L X(j&>P)XU9»E) > 
3l <0n-2 

where 

(38c) 

A / ( P ) = 0 r * , r < l i r - l + ^ . r < i r f l ] « r p i r 1 - * '8TPnrn, ( 3 8 d ) 

with all other symbols as previously defined. The outer-
outer exchange term does not give such a collapse, and, 
as in the case of Si28, allows us to differentiate between 
a! and a". 

L^= £ E ePAik(P)Xik sums/Z, 
i^k P 

(39a) 

ik sums=E ZZi: Y,WMf+a"Mff)Xjsums, (39b) 
i% i%" ik' ik" # 1 

j sums=E ' * * E ©« WfurP) X # sums, (39c) 
?1 2n 

<l sums=D • • • E 3e«0"^)K«0'"£MD - (39d) 
#2 Sn-2 

where 

A»fc(i>) = 5Tpi,T»-+Apjb,Tjfc-iX5Tp,-T,-- • '&TPnTn (40a) 

S . , = r . , (rpi)r... (ri)r. (rpk)r. „ (r/fe) 
iA; uH^Pi vJi"wi °)kupk °3k '^k 

V / - . (rpi) r . ( r i ) . . . r . (rp t t)r . (r») ( 4 0 ^ 
/\03laP1 0JvUl °3n<*Pn °3n<»n > y±\JUJ 

X ' ' ' X ( ^ i n Q n ^ W g n | « 0 , ( 40c ) 

a'M'+a"M" = Z\Wx'+a"MW 
XCRvzjb'xCR^'i^x, (40d) 

l̂ fc ell J^ J 
X M i / l l F l i / ' X i / l l F l j V ) , (40e) 

iWx"=Ex(-i)x+1-w«"'+ft'+^(t''„ * C 
[Jk 3l Jk 

xMi/ll^lli/'XjVllrli,"). (40f) 
Here the single-particle quantum numbers are ordered 
i, k, 1, • • •, i— 1, i+1, • • •, £—1, &+1, — -, n rather 
than 1,2, — -, n, and the ith and £th terms are to be 

skipped in the "• • •" of (39c), (40b), and (40c). The 
new symbols in (40e) and (40f) are 6-j symbols; 
the reduced matrix elements here are given by (32). 

The formulas in this section for K, La\ Z(2), and 
L(3) are in a form amenable to computation by an 
electronic computer, consisting of sums over products of 
Nilsson coefficients, Clebsch-Gordan coefficients, radial 
integrals, and recoupling coefficients. 

VII. RADIAL INTEGRALS 

The above formulas are complete except for a knowl
edge of the radial integrals, (Rj and (Rii>\. For these we 
need to know both the radial eigenfunction and the 
muon wave function. The former are just the eigen-
functions for the spherical harmonic oscillator34 

i ? n ( r ) = (0 ,3/2/7 r l /4)[22+y(2Z+l) M]l/2(a r)^-l/2(ar)2> 

2*2.(0 = («3/2A1/4) (23/3)1/2[3/2- (ar)a]^-W«r)» 
(41) 

The radial parameter a may be found by using the 
radial functions to calculate the expectation of r2 and 
comparing this with the experimental nuclear radius.34 

(r>)= (l/A)Zi <»•%«,= (l/Aa>)Zi [ 2 ( » - l ) + H - 0 
=2? e x p t*=nM^. (42) 

Strictly, this formula should apply only within the 
context of the ordinary shell model, but we see that for 
the N=2 shell, the bracket is the same for nl=2s, 
nl= Id. Thus 

«={E.C2(^-i)+/+a}1/2/M8/6) 
= [36+7 (A -16)/2]1/2/ M u«). (43) 

The nuclear radii for a number of the 2s— Id nuclei 
consistent with muonic x-ray and electron-scattering 
data are given by Sens in his Table II15 and we use these 
values (and interpolations between them), to find a.35 

Ford and Wills have calculated muon wave functions 
for many nuclei by numerically integrating the Dirac 
equation, assuming a nuclear charge distribution 
consistent with electron scattering data.36 We found 
that we could obtain a good fit to the Ford-Wills 
numerical values, for the nuclei of interest, by assuming 
cubic forms for <p and <p2, following Uberall.20 

The one-particle radial integrals (Ri can now be 
evaluated by simple integrations over r. For the two-
particle radial integrals we need to deal with the 
spherical Bessel function j\(vr). The argument of these 
functions is vr<pR^1.5, which is small enough to 
allow us to approximate the j \ by their expansions to 
order (j>r)4.37 With these, the integrations can be 
carried out in the same way as for (Ri. 

34 M.- G. Mayer and J. D. H. Jensen, Elementary Theory of 
Nuclear Shell Structure (John Wiley & Sons, Inc., New York, 
1955), p. 236. 

35 The a's given by Uberall in Ref. 20 actually use r0 = 1.2 
instead of Sens's values, despite the statement to the contrary. 

36 K. W. Ford and J. G. Wills, Los Alamos Report LAMS-2387, 
1960 (unpublished), and private communication. «*$] 

37 L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Com
pany, Inc., New York, 1955), 2nd ed., p. 77. 
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Note that these two-particle radial integrals depend 
on the average neutrino momentum v. This will be of 
some consequence in the role the closed shells play in 
determining the average capture rate. 

VIII. NEUTRINO MOMENTUM, NUCLEI, 
AND THEIR DEFORMATIONS 

The average neutrino momentum v occurs in a very-
important way in the phase space factor of (3) and the 
correct choice of this quantity's value is critical. From 
the conservation of energy, the neutrino momentum for 
a transition from nuclear state A to state B is given by17 

vAB^mlll-BEll/mfl- {EB-EA)/mlx'\, (44) 

where we have dropped terms of order mjM. The 
binding energy BEM for the low Z we are considering 
gives less than a 2 % correction to VAB and we henceforth 
ignore it. Thus, we see that we know v if we know the 
average excitation of the final nucleus, (EB—EA). 

This quantity can be calculated on the basis of a 
Fermi-gas model of the nucleus. Such an analysis has 
been done by Kaplan88 to interpret data he had collected 
on neutron evaporation following mu capture. His 
formulas for the nondegenerate Fermi gas involve two 
parameters, the nuclear "temperature" and the effective 
mass of the nucleon within the nucleus. Results for v 
from these formulas for various choices of the param
eters are presented in Table I I . We see that, for given 
parameters, v does not vary much over the range of 
nuclei we are considering. Kaplan's data38,39 fit his 
model's prediction for the neutron multiplicity for an 
effective mass M*=%MP but not for M* = MP. (There 
is some theoretical justification for such an effective 
mass.) We therefore take as our best choice of average 
neutrino momentum j>=0.75. 

Numerical calculations are presented in this paper 
for F19, Ne20, Si28, CI35, and CI37. To proceed we need to 
know the nuclear deformation and the appropriate 
Nilsson configuration for each. We discuss these nuclei 
in turn, considering at the same time their relevance to 
mu capture. 

F19, the only stable fluorine isotope, consists of a 

TABLE II . Fermi-gas model results for v.* 

Nucleus 

JT19 

JT19 

CI37 

n 
1.03 
1.03 
1.05 

M* 

MN 

WN 
WN 

dF 

10 
20 
20 

Q 

14.5 
22.9 
23.1 

V 

0.828 
0.750 
0.766 

a M* is the effective nucleon_mass, 0F the Fermi nuclear temperature 
(measured in electron masses), Q the average nuclear excitation (in MeV), 
and ~v the average neutrino momentum (in muon masses). 

38 S. N. Kaplan, University of California Lawrence Radiation 
Laboratory Report No. UCRL-3749, 1958 (unpublished). 

39 See also G. Groetzinger, Martin J. Berger, and Gordon W. 
McClure, Phys. Rev. 81, 969 (1951); M. Widgoff, ibid. 90, 892 
(1953); R. D. Crouch and M. F. Sard in Progress in Cosmic Ray 
Physics (Interscience Publishers, Inc., New York, 1952), Vol. II . 

FIG. 1. Configuration for F19. X—proton, O—neutron. 

proton and two neutrons outside the O16 core. I t is a 
"meeting ground" where the three-particle shell model 
with configuration mixing can be compared with the 
Nilsson unified model. This has been done and it is 
found that the two different kinds of wave functions 
have a very good overlap.40 Moreover, Burkhardt and 
Caine41 have calculated the average capture rate in F19 

with the Elliott-Flowers wave function, using the 
closure approximation in the same way as we have. A 
comparison of our result for the nuclear matrix element 
with theirs gives an indication of just how good the 
nuclear matrix element is. 

There are five recent measurements of the capture 
rate in F19.42 Since F19 has a spin of | and because of the 
high conversion rate from the upper to the lower hf level, 
what is actually measured is X_ rather than X. We can 
compare our results for X with experiment, however, 
since the hf difference AX/X has also been measured by 
Winston,16 and, using this experimental result, we can 
find the experimental X. 

Astbury (1958): X_= 2.72=1=0.20, X= 1.73=1=0.20; 

Sens (1959): X_= 2.54=1=0.22, X=1.60=b0.22; 

Eckhause (1962): X_= 2.41 ± 0 . 1 8 , X=1.53±0.18; 

Astbury (1962): X_= 2.40=1=0.40, X= 1.52=1=0.40; 

Winston (1963): X_= 2.40=1=0.10, X= 1.52=1=0.10; 

all rates given in 105 sec-1. Here we have taken AX/X 
= - 0 . 7 8 . 

The nuclear spin of \ indicates that F19 has a positive 
deformation and Nilsson configuration as shown in 
Fig. 1, the three nucleons residing in the first co—§ level. 
The choice of rj can be made in several ways. Nilsson 
suggests, for one thing, that the total energy of the 
A -particle configuration be minimized with respect to 

40 M. G. Redlich, Phys. Rev. 110, 468 (1958). 
41 G. H. Burkhardt and C. A. Caine, Phys. Rev. 117, 1375 

(1960). 
42 A. Astbury, M. A. R. Kemp, N. H. Lipman, H. Muirhead, 

R. G. P. Voss, C. Zanger, and A. Kirk, Proc. Phys. Soc. (London) 
72, 494 (1958); J. C. Sens, reference cited in footnote 15; M. 
Eckhause, T. A. Filipas, R. B. Sutton, R. F. Welsh, and T. A. 
Romanowski, Nuovo Cimento 24, 666 (1962); A. Astbury, I. M. 
Blair, M. Hussain, M. A. R. Kemp, and H. Muirhead, Proc. Phys. 
Soc. (London) 78, 1149 (1962); R. Winston, reference cited in 
footnote 9. 
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the deformation parameter.43 Another way to find rj is 
through the quadrupole moment. A nucleus with spin J, 
as is the case here, does not have a spectroscopic 
quadrupole moment, but the so-called "intrinsic" 
quadrupole moment can be measured from the reduced 
transition probability for an electric quadrupole transi
tion. Finally, the energy-level spectrum as a number of 
rotational bands based upon single-particle levels can 
be fitted to experiment. (In addition to the single-
particle level spacing, the decoupling parameter depends 
strongly on the deformation.) All these methods for 
choosing rj are only in rough agreement with one another, 
so the deformation is only approximately known. Paul 
finds, for F19, a best value of r)=3.0-3.5.u 

Neon occurs predominately in the isotope Ne20 

(abundance 90%), although the isotopes Ne21 andNe22 

are stable. The deformation and Nilsson configuration 
are much like that of F19, the lowest level now filled by 
the additional proton. 

The capture rate for naturally occurring neon has 
just recently been measured by a method due to ShifT,45 

in which the neon is dissolved in liquid hydrogen. Since 
Ne20 is an even-even nucleus, the experiments measure 
X directly. The two measurements are46 

CERN: \=1.69=fc0.3; 

Columbia: X=2.01±0.1; 

again in 105 sec-1. These experimental results are 
reduced somewhat from the rate for Ne20 alone because 
of the presence of the heavier isotopes. 

Si28 is a somewhat special case discussed in Section V 
in terms of simple shell model wave functions. An even-
even nucleus, the experimental rate is15 

Sens: X=7.7±0.25, 

again in 105 sec-1. 
Chlorine occurs in two stable isotopic forms, CI35 and 

CI37, with an abundance of about 75 and 25%, respec
tively. One therefore expects an isotope effect. This has 
been seen experimentally.47 Since each of the chlorine 
nuclei has a spin of f, we again have that the measured 
rates are the rates from the lower hf state. The correc
tion to find X in this case is in the opposite direction 
from that for F19, because here the spin comes from a 
ldz/2 single-particle state, (with 1=1— §), while in F19 

it comes from a 2si/2 state (with I=l+%). We can 
estimate the amount of the correction by means of the 

43 Nilsson, Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd. 
29, No. 16 (1955), Appendix C; T. D. Newton, Can. J. Phys. 38, 
700 (1960). 

44 E. B. Paul, Phil. Mag. 2, 311 (1957). 
« M. Shift, Nuovo Cimento 22, 66 (1961). 
46 G. Conforto, C. Rubbia, and E. Zavattini, Phys. Letters 4, 

239 (1963); Columbia results quoted by L. Wolfenstein (private 
communication). 

47 W. J. Bertram, Jr., R. A. Reiter, T. A. Romanowski, and R. B. 
Sutton, Phys. Rev. Letters 5, 61 (1960). 

BLYP formula48 

AX b 1 2 /+1 

X. ~ a Z' I ' 

b 1 2/+1 

aZ' 7+1 ' 

Z'=(Z-1)£+1. 

I=l+h 

/=M, (45a) 

(45b) 

The parameter £ represents the effect of the Pauli 
exclusion principle in reducing the number of final 
states and can be estimated by comparing this formula 
with the shell-model results of Uberall for F19, Al27, and 
P31.20 This comparison gives £=0.50, 0.30, 0.54, respec
tively, averaging to f=0.45. For CI35-37, the above 
gives, using UFI values for the coupling constants, 

(46) 

(47) 

The difference between these choices, centered about 
the average f of 0.45, is a matter of 5%, which is 
comparable to the experimental error of 3-4% quoted 
by Bertram et al. We combine the errors to get the 
experimental values for X from A_, which are X_35= 18.02 
±0.49, X36 = 20.3±0.6, and X_37= 12.51±0.52, A37= 14.1 
±0.65, all in 105 sec"1. 

The quadrupole moment and the closing of the N=2 
shell at Ca40 indicate that the chlorine nuclei have 
negative deformations. In terms of holes, the configura
tion for CI35 is pictured in Fig. 2. The deformation 
parameter rj for these nuclei can be found in much the 
same way as for F19. In this case, however, there is no 
fitting to the experimental spectra to help us. The 

AX/X=0.137, 
=0.177, 
=0.251, 

which in turn gives 

X= 1.092 X_, 
= 1.126 X_, 

. = 1.187 X_, 

£ = 0.30, 
£ = 0.45, 
£ = 0.60, 

£ = 0.30, 
£=0.45, 
£=0.60. 

FIG. 2. Hole configuration for CI35. X—proton hole, 
O—neutron hole. 

48 J. Bernstein, T. D. Lee, C. N. Yang, and H. Primakoff, Phys. 
Rev. I l l , 313 (1958). 
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magnetic moments can give some information, as well 
as the spectroscopic quadrupole moment. A best value 
for the deformation, which is small, is v\ = — 2. 

IX. RESULTS AND CONCLUSIONS 

We collect all the formulas to express the rate in the 
form 

\=K(v,Z){A+Af), (48) 
where 

K(v,Z) = 
Z3 

2v2a/l+i>/M 
,(»)• 

and 
^ 5 0 . 6 P 2 Z 3 s e c " 1 , 

{A+A') = aX+a'X'+a"X". 

(49a) 

(49b) 

Here the X's are the nuclear matrix elements apart from 
the coupling constants which occur in a, a', a", given 
by (6). We have taken a factor of (gF

(/3))2 into K(v,Z). 
X' and X" arise entirely from the outer-outer exchange 
term L^\ 

The values of X, Xr, X" and the matrix element 
(A-\-Af) under the usual UFI assumptions are collected 
in Table I I I for various choices of v and rj. For F19 we 
have also considered the effect of changing the nuclear 
radius, although we expect the Sens' values used every
where else to be better radii. 

We note the strong dependence of the matrix element 
on the neutrino momentum v, a dependence which is 
more and more strong as we go through the shell 
from F19 to CI37. This comes about roughly because we 
are evaluating the quantity 

We do not get the quadratic dependence indicated here 
because of the integration over ri, r2 separately and the 
inclusion of (vr)A terms. The increase in the dependence 
on v as we approach the closing of the shell at Ca40 

arises from the fact that the two-particle terms in the 
matrix element cancel more and more of the one-particle 
contributions, simply reflecting the Pauli exclusion-
principle effect which reduces thejnumber of neutron 
states available within the N=2 shell. The dependence 
of (A+A') on v, in addition to the p2 dependence of the 
phase-space factor, emphasizes the importance of 
choosing the correct average neutrino momentum. 

The effect of changing the nuclear deformation is, on 
the whole, surprisingly small. As we can see, only the 
Gamow-Teller term expressing the exchange of two 
outer nucleons is sensitive to rj. This could be expected 
from the fact that the one-particle term and the Fermi 
two-particle term do not involve, in any essential way, 
an angular momentum operator, as does the Gamow-

TABLE III. Nuclear matrix elements. 

(a) F» j>=0.70 i>=0.75 
r o = 1.03 
i>=0.80 j>=0.85 S>=0.90 

r o = 1.20 
i>=0.75 

X 
Xf 

X" 
{A+A%m 

X 
X' 
X" 

(A+A')VJF1 

X 
X' 
X" 

1.5970 
-0.4327 
-0.5846 
7.845 

1.5998 
-0.4368 
-0.9031 
7.354 

1.7124 
-0.3998 
-0.5413 
8.614 

1.7161 
-0.4049 
-0.8388 
8.160 

v = +2 
1.8329 

-0.3672 
-0.4985 
9.410 

*7 = + 4 
1.8371 

-0.3733 
-0.7755 
8.990 

1.9579 
-0.3353 
-0.4566 
10.230 

1.9633 
-0.3427 
-0.7138 

9.847 

2.0878 
-0.3044 
-0.4163 
11.075 

2.0941 
-0.3130 
-0.6545 
10.726 

1.9722 
-0.3129 
-0.4270 
10.383 

1.9779 
-0.3207 
-0.6692 
10.025 

(b) Ne20 

X 
X' 
X" 

(A+A')VVI 

(c) Si28 

X 
X' 
X" 

(A+A%F1 

(d) CI35"37 

j>=0.70 

2.1627 
-0.8262 
-1.2955 

9.581 

j> = 0.70 

3.6510 
-1.9757 
-2.7879 
14.626 

P = 0.70 

r? = + 2 
j> = 0.75 

2.2675 
-0.7637 
-1.2020 
10.398 

i 

z> = 0.75 

/=0.75 

3.6999 
-1.8224 
-2.5786 
15.397 

j> = 0.80 

2.3777 
-0.7018 
-1.1049 
11.243 

CF , ??=-2 
P = 0.80 

j/=0.80 

3.7583 
-1.6736 
-2.3765 
16.207 

V 

i>=0.70 

2.1683 
-0.8304 
-1.7856 

8.835 

= 0.85 

i>-0.85 

3.8274 
-1.5311 
-2.1836 
17.057 

i>= 

i>=0.75 

2.2743 
-0.7687 
-1.6572 

9.713 

=0.90 

i>=0.80 

2.3858 
-0.7078 
-1.5310 
10.618 

i>=0.90 

3.9080 
-1.3962 
-2.0020 
17.948 

CI35,77=-2 
j>=0.75 

1.8007 

10.390 

2.0264 

11.692 

2.2609 

13.045 

2.5038 

14.447 

2.7546 

15.894 

2.6132 
-0.3896 
-0.3637 
14.102 
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TABLE IV. Rates without Fermi coupling.* 

V 

V 

(A+A') 

K(f>,Z)h 

Xc 

A e x p t 

£T19 

1.03 
0.75 

+4 
7.48 
6.83 
2.075 
1.55 
1.42 
1.52±0.10 

Ne20 

1.03 
0.75 

+4 
8.97 
8.18 
2.846 
2.55 
2.33 
1.69±0.30 
2.01±0.10 

Si28 

1.03 
0.75 
0 

14.79 
13.50 
7.810 

11.55 
10.54 
7.77±0.25 

CI35 

1.05 
0.75 

- 2 
12.98 
11.84 
13.948 
18.15 
16.56 
20.3±0.6 

a From Cl«'s >exPt = 14.1 ±0.65, w/ME at T? = - 2 , ?=0.75; we find, if 
a'=0, a=3a"=4.98±0.23=5.21 or 4.75. 

*> In 10* s e c - i . 
o In 105 sec-1. 

Teller term with (fray. The breaking of the spherical 
symmetry will more strongly affect the matrix elements 
of the latter. 

The isotope effect can be seen in the results for CI35 

and CI37. 
The matrix element for F19 obtained by Burkhardt 

and Caine using the Elliott-Flowers wave function was 
(A+A') = 9.120 at i> = 0.82. We see that this compares 
favorably with our results at the best value of rj = 4 and 
at the same v, and on the basis of this alone we would 
estimate the matrix elements calculated here are about 
5% accurate. 

Using these matrix elements, we now consider 
whether or not the interaction contains a Fermi term in 
addition to the Gamow-Teller term.4 Suppose we set 
the Fermi coupling a' = 0 and choose the Gamow-Teller 
a" so that the theoretical and experimental rates for 
CI37 agreed (CI37 has no outer-outer exchange terms, so 
the only dependence on the coupling constants is 
through a, which in this case is 3a".) We can now use 
this value of a" to predict the corresponding rates for 
the remaining nuclei. These results are compared with 
the experimental values in Table IV. As we can see, 
it is not clear that the case a'=0 is contradicted by the 
experimental evidence. 

Let us assume, however, that the interaction is of the 
V—A type. We consider and compare the results for 
five different possible variations: 

I. Usual UFI, as above. Weak magnetism present, 
gp=%gA-

II. UFI, but with weak magnetism absent, gp=8gA-

III. UFI, with weak magnetism present, but gp=0. 

IV. UFI, with weak magnetism present, but gp= 16g^. 

V. UFI, with weak magnetism present, but gP = — 8gA. 

On the basis of the 4̂ = 12 beta-decay experiments,49 we 
do not expect that case II will reflect reality. Neverthe-

49 Y. K. Lee, L. W. Mo, and C. S. Wu, Phys. Rev. Letters 10, 
253 (1963). 

less, it is worthwhile to see what mu capture can say 
about CVC predictions. Case IV is suggested by the 
recent 0+ —•>0~ measurement in O16.14 Case V is 
considered because of the uncertainty in the dispersion 
theoretic argument7 which obtained gp=&gAy an argu
ment which extracts information from rates (squares of 
coupling constants) rather than from the coupling 
constants themselves. The values of a, a\ and a", in 
units of (gv(®)2, are given in Table V for each of these 
cases. 

In Table VI we present the matrix elements and rates 
under the five different cases for the nuclei being 
considered. The best values of the parameters v and rj 
are indicated and the UFI values for the rates corre
sponding to these are given in italics. 

The case of Si28, as we have said, is somewhat special. 
The predicted rates are quite high compared to the 
experimental rates. This may result from the simplicity 
of the nuclear wave function in this case. While we are 
nominally within the context of the Nilsson model, only 
U5/2 single-particle eigenfunctions are used in making 
up the Slater determinant. This completely neglects the 
mixing of these states with the close-lying 2$i/2 states, 
which almost certainly takes place, and which is in 
fact present in the Nilsson model at a nonzero deforma
tion. We are therefore led to discount these calculations 
when we come to discuss the coupling constants and 
henceforth concentrate our attention on the remaining 
nuclei, for which the outer shell contributions were 
calculated by electronic computer. 

The UFI values given in Table VI for the preferred 
values of the parameters are in good agreement with 
the experimental rates. They are somewhat high, 
though, and the fit to experiment is better if we take 
j>=0.72, extrapolating linearly to find the matrix 
element at this momentum. 

Are any of the cases, I through V, excluded by the 
comparison to experiment? It seems fairly clear that 
case V, for which the pseudoscalar term has the "wrong" 
sign, is such a case. This is the same conclusion reached 
by Reynolds et al. in their recent remeasurement of the 
C12 partial rate.12 We might be able to go somewhat 
further than this and argue that case III, for which 
gp=0, also gives results which are too large. In other 
words, the pseudoscalar term is probably present. The 
case which fits the experimental rates best at i>=0.75 
appears to be case IV, for which the pseudoscalar term 
is large, gp= 16gA, although the differences between this, 
the usual UFI case I, and the UFI hypothesis without 
the weak magnetism term II are probably not signifi
cant. 

TABLE V. a, a', a" for five choices of couplings. 

a 
a' 
a" 

I 

5.77 
1.03 
1.58 

I I 

4.84 
1.03 
1.27 

I I I 

6.73 
1.03 
1.90 

IV 

5.26 
1.03 
1.41 

V 

8.17 
1.03 
2.38 
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TABLE VI. Matrix elements and rates. 

(a) Si2* =0.70 £=0.75 £=0.80 ? = 0.85 £=0.90 

(A+A'} 

K(v,Z)» 

Xb 

I 
I I 
I I I 
IV 
V 

I 
I I 
I I I 
IV 
V 

14.626 
12.095 
17.239 
13.238 
21.159 

6.803 

9.950 
8.228 

11.728 
9.006 

14.394 

15.397 
12.756 
18.124 
13.949 
22.214 

7.810 

12.025 
9.962 

14.155 
10.894 
17.349 

16.207 
13.449 
19.055 
14.695 
23.327 

8.886 

14.402 
11.951 
16.932 
13.058 
20.728 

17.057 
14.174 
20.033 
15.476 
24.496 

10.032 

17.112 
14.219 
20.097 
15.526 
24.574 

17.948 
14.934 
21.059 
16.295 
25.726 

11.247 

20.186 
16.796 
23.685 
18.237 
28.934 

(b)F19 £ = 0.70 
fo = 1.03,77 = + 2 

£=0.75 £=0.80 £=0.85 £=0.90 
r0 = l.O3,i7 = + 4 fo = 1.20, £ = 0.75 

£ = 0.70 £ = 0.75 £ = 0.80 £=0.85 £=0.90 ^ = + 2 7? = + 4 

(A+A*) 

Kv(,Z) 

I 
I I 
I I I 
IV 
V 

I 
I I 
I I I 
IV 
V 

7.845 
6.541 
9.191 
7.130 

11.211 

1.807 

1.418 
1.182 
1.661 
1.288 
2.026 

8.613 
7.189 

10.084 
7.832 

12.290 

2.075 

1.787 
1.492 
2.092 
1.625 
2.550 

9.410 
7.860 

11.010 
8.560 

13.410 

2.361 

2.222 
1.856 
2.599 
2.021 
3.166 

10.230 
8.551 

11.964 
9.309 

14.564 

2.665 

2.726 
2.279 
3.188 
2.481 
3.881 

11.076 
9.263 

12.946 
10.081 
15.753 

2.989 

3.311 
2.769 
3.870 
3.013 
4.709 

7.354 
6.146 
8.601 
6.692 

10.471 

1.807 

1.329 
1.111 
1.554 
1.209 
1.892 

8.160 
6.824 
9.539 
7.427 

11.607 

2.075 

1.693 
1.416 
1.979 
1.541 
2.408 

8.990 
7.522 

10.506 
8.185 

12.779 

2.361 

2.123 
1.776 
2.480 
1.932 
3.017 

9.848 
8.243 

11.504 
8.968 

13.988 

2.665 

2.624 
2.197 
3.066 
2.390 
3.728 

10.727 
8.982 

12.528 
9.770 

15.229 

2.989 

3.206 
2.685 
3.746 
2.920 
4.552 

10.383 
8.681 

12.139 
9.449 

14.774 

2.705 

2.154 
1.801 
2.519 
1.961 
3.066 

10.025 
8.393 

11.710 
9.130 

14.236 

2.705 

2.080 
1.742 
2.430 
1.894 
2.954 

(c) Ne20 d £ = 0.70 
*7 = + 2 
£ = 0.75 £ = 0.80 £ = 0.70 

*7 = + 4 
£=0.75 = 0.80 

{A+A') 

K{v,Z) 

Xe 

I 
I I 
I I I 
IV 
V 

I 
I I 
I I I 
IV 
V 

9.581 
7.971 

11.288 
8.698 

13.735 

2.479 

2.375 
1.976 
2.798 
2.156 
3.405 

10.398 
8.662 

12.190 
9.446 

14.878 

2.846 

2.959 
2.465 
3.469 
2.688 
4.234 

11.243 
9.376 

13.170 
10.219 
16.061 

3.238 

3.640 
3.036 
4.264 
3.309 
5.201 

8.835 
7.372 

10.345 
8.033 

12.610 

2.479 

2.190 
1.828 
2.565 
1.991 
3.126 

9.713 
8.111 

11.366 
8.834 

13.845 

2.846 

2.764 
2.308 
3.235 
2.514 
3.940 

10.618 
8.874 

12.419 
9.662 

15.119 

3.238 

3.438 
2.873 
4.021 
3.129 
4.896 

(d) CI35"37 £ = 0.70 £=0.75 
C F , r 7 = - 2 

£=0.80 £ = 0.85 £=0.90 
CI35, v= -2 

£=0.75 

{A+A'} 

K{v,Z) 

V 

a In 104 sec" 
*> In 106 sec' 

I 
I I 
I I I 
IV 
V 

I 
I I 
I I I 
IV 
V 

10.390 
8.715 

12.119 
9.472 

14.712 

12.181 

12.656 
10.616 
14.762 
11.538 
17.921 

_1, holding throughout this table. 
_1, holding throughout this table. Xexpt: 

11.692 
9.808 

13.638 
10.659 
16.556 

13.984 

16.350 
13.716 
19.071 
14.906 
23.152 

= 7.77 ±0.25 (Sens). 

13.045 
10.943 
15.216 
11.892 
18.472 

15.910 

20.755 
17.410 
24.209 
18.920 
29.389 

14.447 
12.118 
16.851 
13.170 
20.456 

17.961 

25.948 
21.765 
30.266 
23.655 
36.741 

15.894 
13.332 
18.539 
14.489 
22.505 

20.136 

32.004 
26.845 
37.330 
29.175 
45.316 

14.102 
11.785 
16.495 
12.831 
20.083 

13.964 

19.720 
16.480 
23.067 
17.943 
28.084 

c Aexpt = 1.52 ±0.10 (Winston). 
d Uncorrected for 10% Ne22 isotopic abundance. 
e XcERN =1.69 ± 0 . 3 , XColumbia =2 .01 ± 0 . 1 . 
' Cl«, xexpt = 14.1 ±0.65 (Bertram); Cps, Xexpt =20.3 ±0.60 (Bertram). 

Apart from what we can conclude regarding coupling 
constants, the results above show why Tolhoek and 
his collaborators16 might have obtained a rate so large 
for Ca40 that G2 would have to be twice too small to 

fit experiment. First, these authors used shell-model 
wave functions similar to those we used for Si28. We 
found the Si28 rates to be high, and this might be 
attributed to the simplicity of the nuclear description. 



C A L C U L A T I O N S OF MU C A P T U R E R A T E S IN 2 s-Id N U C L E I B555 

Perhaps more significant, Tolhoek's choice of v was 
0.825, which is quite large compared with our 0.75. 
They arrived at this choice as follows. The nuclear 
matrix element was calculated in two ways—by sum
ming over final states and by the closure approximation. 
The average neutrino momentum was then chosen so 
that the two methods gave the same result. If we look 
at our CI37 results at this momentum, we see that the 
rate is nearly twice the experimental rate. Moreover, 
this should be enhanced somewhat when we go to the 
closed shell case of Ca40. The problem here seems to be 
the average neutrino momentum, and Tolhoek's large 
v could easily result from not including enough final 
states in his summation. 
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APPENDIX: OUTER SHELL MATRIX 
ELEMENTS, REDUCTION 

As an example of the method for obtaining the 
computerable expressions for the outer shell matrix 
elements given in the text, let us consider the reduction 
of L<«. 

LM = a[i& [iff'&&{$$') 

XDMK^mDMK^O'yK, (Al) 
where 

£U>=<9Co(l. • -n)| Dt(*0 E (—J-) 

X ^ W D ( n | 9 C b ( l - • • » ) ) . (A2) 

Here 9Co(l*--w) is the intrinsic outer shell function 
formed from Nilsson single-particle eigenfunctions, with 
its arguments given in terms of space-fixed coordinates. 
We have supposed it to be antisymmetric and this can 
be assured by means of an antisymmetrizer. 

9CQ(1- • -») = Z P €pXpi(l)XP2(2). • -XPn(n). (A3) 

The permutations (of n objects) act on the sets of 
quantum numbers of the Nilsson configuration for the 
nucleus being considered. 

The antisymmetrizer P = £ p e p P nominally occurs 
in both the bra and the ket of the matrix element given 
in (2). P is a Hermitian operator with the property 
that P2= P. The operator D ^ O D C O written out as 
a function of J = EiJ* is symmetric with respect to 
interchange, i.e., commutes with P. Thus we can 

rewrite (A2) in the simpler form 

£ ( 1 )= E E 6P(XP1(l)Xp2(2). • .XPn(»)| 
i = l P 

XDt(0')( W(r<)D(e") 

X|x1(l)X,(2)-.-X„(»)>. (A4) 

The Nilsson eigenfunctions, we saw, are specified by 
the quantum numbers co, r, r and are given by 

6/2 

Xa>rr-Zr(t) £ ^ ^ n l ^ W ^ ) , (AS) 
?=l/2 

where ZT is the isospinor and yj the usual spin-angle 
eigenfunction. Making this substitution in (A4), we get 

n 

Hl)= 22 Z-/€pX5TPi,+i/2X5Tpiri5Tp2T2- • •dTPnTn 
i = l P 

Xjsums, (A6a) 

j sums = E - • - L E ' ' ' E &<J'f'<»rPWU'J"<*P) 
h' in h" in" 

XWh'l^ir^ln/'li"), (A6b) 

($ = rj i ^ (rp^fA // ( r iV„- t (rP2)r- ,, <r2) . . . >-" t/Ji'a>pi t/.?i"ct>i t/J2 WP2 °J2 «2 

X ^ W r p " ^ . ( r * ) , (A6c) 

9 K = < i l W ' -JnWnl D t ( ^ ) D ( 0 

X b W r - j V W - (A6d) 

The string of Kronecker delta's in the isospin quantum 
numbers in (6a) results from the isospin integrations. 
Denoting this henceforth by A,-(P), we note that this 
restricts the possible permutations to those of the 
form P=$T, where S is a permutation acting just 
among the w, sets of proton quantum numbers and T 
is a permutation acting among the nv—n—nT sets of 
neutron quantum numbers. The operator § (l-fr3

(i )) 
acts as a projection operator and requires the ith. 
nucleon to be a proton. In (A6c) we have used the fact 
that the Nilsson coefficients are real. 

Recalling properties (11) and (12) of the rotation 
operator D(0), (A6d) becomes 

»»l' mn
f m i " m » " 

X O ' i W , - • ;jn't»»'\ji"mi",- • ;j»"m»") 

= *h'ii h„>ln" E • • • £ Dmiapn{6')- • • 
mi mn 

XDmnuPttHd')Dmim"*{B') • • - D ^ , t f ( 0 . (A7) 

The orthogonality between the primed and double-
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primed quantities throws away half the summations 
in (A6b) and (A7), as well as reducing the radial integral 
in (A6b) to the 6iit given in the text. 

At this point we can carry out the Hill-Wheeler 
integrations indicated in (Al). These can in fact be 
done independently, as the dependence on 0' and 0" in 
(A7) has been separated into two factors, each being a 
string oinD functions. We get an additional D function 
from (Al). We treat the integral, 

*= id6Dmi^{e)Dm2^{e)" • 

XD^J^DMK1*^), (A8) 

in the following way. We first note that the product of 
two D functions can be expressed as a linear combination 
of D functions, the so-called Clebsch-Gordan series.26 

Drn^H^Drn^HO) = E^ (jljmitn* \ 3™) 

X (jiJ2Uio>213Q)Dfms W. (A9) 

We go through this coupling process n—\ times, 
proceeding from the left, to obtain 

*=£••• E ^'(i>)m'O>0 
8l Sn-l 

X f ddDm^^-^DMK^ie), (AlOa) 

x'= UiJ&i<»2\3itoi)(3ij&i<*z\3A)- - • 

X {3n-2Jr&n-*)n \ $n-&n-l) , (A 10b) 

m '= (j1j2m1m2\ smd($1jm'im\3£K2) • • • 

X (Sn-2JrMn~-2^n | ^ n - l ^ n - l ) . ( A l O c ) 

At this point we use the orthogonality of the D func
tions26 

( DMKI*{e)Dmn.lunJn~Ko)de 

8TT2 

= SlSn-lSMMn-fiKSln-l 9 (AH) 

2 /+1 

so that 

8TT2 

* = E* *' E 5 C 0 » m ( i ^ ) , (A12a) 

2/+1 $1 gn-2 

n—2^n \IK), (A12b) 

nt = (jij2m1m2 \ 3Mi)' • • {3n~2JrMn-2mn \ IM). (A12c) 
There are two such integrations, one for 0' and the 

other for 0". Since we end up with sums over Clebsch-
Gordan coefficients, which are real, the fact that the 
0" integral is the complex conjugate of (A8) does not 
bother us. Also, since the "parent momenta" gi have 
no physical meaning, i.e., are not quantum numbers of 
the wave function, we can couple the D functions in 
(A8) in any order. The choice which leads to (A 12) is 
merely one of convenience. 

The 0' integration has 3C depend on the permutation 
P, as this is what orders the co's. Both 3C's from the two 
integrations are independent of the tn's. Thus, dropping 
an over-all factor of [87r2/(2/+l)]2 and reordering 
the 3 and the m summations, (Al) becomes 

L(1) = a E E epAi(P) Xj sums/Z, (A13a) 
i=l P 

i sums=E--*ES0WP)(R^X5sums, (A13b) 

h in 

#sums = I > " E E '•• E 3C(i^a>P) 
$1 gn-2 3l" 8n-2" 

XX(J3"wE)Xni sums, (A13c) 

m sums=E *' *E w(J3'm)mU3"m) • (A13d) 
mi mn 

We now finally get the result given in the text when 
we recognize that the m sums collapse into h^^n • • • 
Xd$n_2'gn_2"- This comes about from the orthogonality 
of the Cebsch-Gordan coefficients appearing in the 
tn's. Although not really necessary in this case, it is 
best to unravel the sums proceeding from right to left. 
In the more complicated two-particle cases, this then 
gives rise to the 6-j symbols appearing in (40). 


